Skip to main content

Bioaccumulation of contaminants in fish

  • Chapter
Fish Ecotoxicology

Part of the book series: EXS ((EXS,volume 86))

Summary

The term bioaccumulation is defined as uptake, storage, and accumulation of organic and inorganic contaminants by organisms from their environment. Bioaccumulation therefore results from complex interactions between various routes of uptake, excretion, passive release, and metabolization. For fish, the bioaccumulation process includes two routes of uptake: aqueous uptake of water-borne chemicals, and dietary uptake by ingestion of contaminated food particles. The contribution to bioaccumulation that results from aqueous exposure and is taken up by the gills is called bioconcentration. The contribution to bioaccumulation resulting from dietary exposure via uptake by intestinal mucosa is termed biomagnification. In both cases, important co-determinants for bioaccumulation are the various elimination mechanisms. This chapter presents a short historical survey of the problem of bioaccumulation with particular reference to fish and of the various approaches to study bioaccumulation. This is followed by an overview of our present knowledge about basic physico-chemical determinants that either increase or reduce the bioaccumulation potential of various chemicals, and about the physiological basis of gills, blood circulation and intestines, as far as they are crucial for our understanding of uptake and accumulation. Finally, selected quantitative data and modelings of bioaccumulation in fish will be discussed, with regard to such problems as the relative importance of aqueous and dietary uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.H. (1983) Compartmental modeling and tracer kinetics. In: Lecture notes in biomathematics, Vol. 50. Springer, Berlin, 302 pp.

    Google Scholar 

  • Banerjee, S., G.L. and Baughman (1991) Bioconcentration factors and lipid solubility. Environ. Sci. Technol. 25: 536–539.

    Article  CAS  Google Scholar 

  • Barber, M.C., Suarez, L.A. and Lassiter, R.R. (1988) Modeling bioconcentration of nonpolar organic pollutants in fish. Environ. Toxicol. Chem. 7:545–558.

    Article  CAS  Google Scholar 

  • Barber, M.C., Suarez, L.A. and Lassiter, R.R. (1991) Modeling bioaccumulation of organic pollutants in fish with an application to PCBs in Lake Ontario salmonids. Can. J. Fish. Aquat. Sci. 48:318–337.

    Article  CAS  Google Scholar 

  • Barron, M.G. (1990) Bioconcentration. Environ. Sci. Technol. 24:1612–ff.

    Article  CAS  Google Scholar 

  • Barron, M.G. (1995) Bioaccumulation and bioconcentration in aquatic organisms. In: Hoffman, D.J., Rattner, B.A., Burton, G.A. and Cairns, J. (eds.) Handbook of ecotoxicology. Lewis Publ., Boca Raton, pp. 652–666.

    Google Scholar 

  • Baughman, G.L. and Paris, D.F. (1982) Microbial bioconcentration of organic pollutants from aquatic systems — a critical review. CRC Crit. Rev. Microbiol. 205–227.

    Google Scholar 

  • Bierman, V.J. (1990) Equilibrium parititioning and biomagnification of organic chemicals in benthic animals. Environ. Sci. Technol. 24:1407–1412.

    Article  CAS  Google Scholar 

  • Boland, E.J. and Olson, K.R. (1979) Vascular organization of the catfish gill filament. Cell Tissue Res. 198: 487–500.

    Article  PubMed  CAS  Google Scholar 

  • Booth, J.H. (1978) The distribution of blood flow in the gills of fish: application of a new technique to rainbow trout (Salmo gairdneri). J. Exp. Biol. 73:119–129.

    Google Scholar 

  • Bruggeman, W.A., Martron, L.B.J.M., Kooiman, D. and Hutzinger, O. (1981) Accumulation and elimination kinetics of di-, tri-and tetra-chlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10:811–832.

    Article  CAS  Google Scholar 

  • Bryan, G.W and Langston, W.J. (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 76:89–131.

    Article  PubMed  CAS  Google Scholar 

  • Butte, W, Paul, C., Willig, A. and Zauke, G.-P. (1988) Beziehungen zwischen der Struktur von Phenolen and ihrerAkkumulation gemessen im Flow-through Fisch-Test (OECD No. 305E). Forschungsbericht im Auftrag des Umweltbundesamtes (FKZ 106 02 053), Oldenburg.

    Google Scholar 

  • Carson, E.R., Cobelli, C. and Finkelstein, L. (1983) The mathematical modeling of metabolic and endocrine systems. John Wiley and Sons, New York, 394 pp.

    Google Scholar 

  • Chiou, C.T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ. Sci. Technol. 19:57–62.

    Article  Google Scholar 

  • Cobelli, C. and Goffolo, G. (1985) Compartmental and noncompartmental models as candidate classes for kinetic modeling, theory and computational aspects. In: Eisenfeld J. and DeLisi, C. (eds.) Mathematics and computers in biomedical applications. Elsevier Science Publishers B.V. (North-Holland).

    Google Scholar 

  • Connell, D.W. (1998) Bioaccumulation of chemicals by aquatic organisms. In: SchĂĽĂĽrmann, G. and Markert, B. (eds.) Ecotoxicology. John Wiley and Sons Inc., New York, and Spektrum Akademischer Verlag, Heidelberg, p. 439–450.

    Google Scholar 

  • Covell, D.G., Berman, M. and Charles, D. (1984) Mean residence time — theoretical development, experimental determination, and practical use in tracer analysis. Math. Biosci. 72: 213–244.

    Article  Google Scholar 

  • Cowan, C.E., Versteeg, D.J., Larson, R.J. and Kloepper-Sams-P.J. (1995) Integrated approach for environmental assessment of new and existing substances. Reg. Toxicol. Pharmacol. 21: 3–31.

    Article  CAS  Google Scholar 

  • Dauble, D.D. and Curtis, L.R. (1989) Rapid branchial excretion of dietary quinoline by rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 46:705–713.

    Article  CAS  Google Scholar 

  • Davies, J.C. (1970) Estimation of circulation time in rainbow trout, Salmo gairdneri. J. Fish. Res. Bd. Can. 27: 1860–1863.

    Article  Google Scholar 

  • diToro, D.M., Zarba, C.S., Hansen, D.J., Berry, W.J., Swartz, R.C., Cowan, C.E., Pavlou, S.P., Allen, H.E., Thomas, N.A. and Paquin, P.R. (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ. Toxicol. Chem. 10:1541–ff.

    Article  CAS  Google Scholar 

  • Donkin, P. (1994) Quantitative structure-activity relationships. In: Calow, P. (ed.) Handbook of ecotoxicology. Vol. 2, Blackwell, Oxford, p. 321–347.

    Google Scholar 

  • Erickson, R.J. and McKim, J.M. (1990) A model for exchange of organic chemicals at fish gills: flow and diffusion limitations. Aquat. Toxicol. 18: 175–198.

    Article  CAS  Google Scholar 

  • Fent, K., Lovas, R. and Hunn, J. (1991) Bioaccumulation, elimination and metabolism of triphenyltin chloride by early life stages of minnows Phoxinus phoxinus. Naturwissenschaften 78:125–127.

    Article  CAS  Google Scholar 

  • Gehrke, P.C. (1987) Cardio-respiratory morphometrics of the spangled perch Leioptherapon unicolor (Gunter, 1859) (Percoidei, Teraponidae). J. Fish. Biol. 31: 617–623.

    Article  Google Scholar 

  • Geyer, H., Sheehan, D., Kotzias, D., Freitag, D. and Korte, E (1982) Prediction of ecotoxicological behaviour of chemicals: relationship between physicochemical properties and bioaccumulation of organic chemicals in the mussel. Chemosphere 11:1121–1134.

    Article  CAS  Google Scholar 

  • Geyer, H., Scheunert, I. and Korte, E (1985) Relationship between the lipid content of fish and their bioconcentation potential of 1,2,4-trichlorobenzene. Chemosphere 14:545–555.

    Article  CAS  Google Scholar 

  • Geyer, H.J., Muir, D.C.G., Scheunert, I., Steinberg, C.E.W. and Kettrup, A.A.W. (1992) Bioconcentration of octachlorodibenzo-p-dioxin (OCDD) in fish. Chemosphere 25: 1257–1264.

    Article  CAS  Google Scholar 

  • Geyer, H., Muir, D.C.G., Scheunert, I., Steinberg, C.E.W. and Kettrup, A.W. (1994a) Bioconcentation of superlipophilic persistent chemicals — Octachlorodibenzo-p-dioxin (OCDD) in fish. Environ. Sci. Pollut. Res. 1:75–80.

    Article  CAS  Google Scholar 

  • Geyer, H.J., Scheunert, I., BrĂĽggemann, R., Matthies, M., Steinberg, C.E.W., Zitko, V, Kettrup, A. and Garrison, W. (1994b) The relevance of aquatic organisms“ lipid content to the toxicity of lipophilic chemicals: Toxicity of lindane to different fish species. Ecotox. Environ. Safety 28:53–70.

    Article  CAS  Google Scholar 

  • Gobas, F.A.P.C. and Mackay, D. (1987) Dynamics of hydrophobic organic chemical bioconcentration in fish. Environ. Toxicol. Chem. 6:495–504.

    Article  CAS  Google Scholar 

  • Gunkel, G. and Streit, B., (1980) Mechanisms of bioaccumulation of a herbicide (atrazine, s-triazine) in a freshwater mollusc (Ancylus fluviatilis MĂĽll.) and a fish (Coregonus fera Jurine). Water Res. 14:1574–1584.

    Article  Google Scholar 

  • Hawker, D.W. and Connell, D.W. (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotox. Environ. Safety 11: 184–197.

    Article  CAS  Google Scholar 

  • Hayton, W.L. and Barron, M.G. (1990) Rate limiting barriers to xenobiotic uptake by the gill. Environ. Toxicol. Cheat. 9:151—ff.

    Google Scholar 

  • Holmes, W.N. and Donaldson, E.M. (1969) The body compartments and the distribution of electrolytes. In: Hoar, W.S. and Randall D.J. (eds.) Fish physiology. Vol. I. Academic Press, London, p. 1–89.

    Google Scholar 

  • Hughes, G.M. (1966) The dimensions of fish gills in relation to their function. J Exp. Biol. 45: 177–195.

    PubMed  CAS  Google Scholar 

  • Hughes, G.M (1972) Morphometrics of fish gills. Respira Physiol. 14:1–25.

    Article  CAS  Google Scholar 

  • Hughes, G.M. (1984) General anatomy of the gills. In: Hoar, W.S. and Randall D.J. (eds.) Fish physiology. Vol. X Part A. Academic Press, London, p. 1–72.

    Google Scholar 

  • Karickhoff, S.W., Brown, D.S. and Scott, T.A. (1979) Sorption of hydrophobic pollutants on natural sediments and soil. Water Res. 13:241–248.

    Article  CAS  Google Scholar 

  • Kenaga, E.E. and Goring, C.A. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota. In: Eaton J.G. et al. (eds.) Aquatic toxicology, Vol. 7. Amer. Soc. Test. Mat. STM, Philadelphia.

    Google Scholar 

  • Kornmayer, R. and Streit, B., (1978) Adsorption und Anreicherung von Atrazin und seinen Abbauprodukten an FluĂźwassersediment. Arch. Hydrobiol. Suppl. 55: 186–210.

    CAS  Google Scholar 

  • Lake, J.L. (1990) Equilibrium partitioning and bioaccumulation of sediment-associated conta-minants by infaunal organisms. Environ. Toxicol. Chem. 9:1095–1106.

    Article  CAS  Google Scholar 

  • MacKay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16:274–278.

    Article  CAS  Google Scholar 

  • MacKay, D. (1991) Multimedia environmental models: the firgacity approach. Lewis, Chelsea, 257 pp.

    Google Scholar 

  • Mackay, D. (1998) Multimedia mass balance models of chemical distribution and fate. In: SchĂĽĂĽrmann, G. and Markert, B. (eds.) Ecotoxicology. John Wiley and Sons Inc., New York, and Spektrum Akademischer Verlag, Heidelberg, p. 237–257.

    Google Scholar 

  • Maren, T.H., Embry, R., Broder and L.E. (1968) The excretion of drugs across the gill of the dogfish, Squalus acanthias. Comp. Biochem. Physiol. 26:853–864.

    Article  CAS  Google Scholar 

  • Motais, R., Isaia, J., Rankin, J.C. and Maetz, J. (1969) Adaptive changes of the water permeability of the teleostean gill epithelium in relation to external salinity. J. Exp. Biol. 51: 529–546.

    PubMed  CAS  Google Scholar 

  • Murphy, P.G. and Murphy, J.V. (1971) Correlations between respiration and direct uptake of DDT in the mosquito fish Gambusia affinis. Bull. Environ. Contain. Toxicol. 6:581–588.

    Article  CAS  Google Scholar 

  • Nagel, R. (1988) Umweltchenikalien und Fische — Beiträge zu einer Bewertung. Habilitations-schrift, Univ. Mainz (FRG), 256 pp.

    Google Scholar 

  • Neely, W.B., Branson, D.R. and Blau, G.E. (1974) Partition coefficients to measure bio- concentration potential of organic chemicals in fish. Environ. Sci. Technol. 8: 1113–1115.

    Article  CAS  Google Scholar 

  • Nendza, M. (1991) QSARs of bioconcentration: Validity assessment of log Pow/log BCF correlations. In: Nagel, R. and Loskill, R. (eds.) Bioaccumulation in aquatic systems. Contributions to the assessment. VCH, Weinheim, p. 43–66.

    Google Scholar 

  • Niimi, A.J. and Morgan, S.L. (1980) Morphometric examination of the gills of walleye, Stizostedion vitreum vitreum (Mitchell) and rainbow trout, Salmo gairdneri (Richardson). J. Fish Biol. 16:685–692.

    Article  Google Scholar 

  • Ogata, M., Fujisawa, K., Ogino, Y. and Mano, E. (1984) Partition coefficients as a measure of bioconcentration potential of crude oil compounds in fish and shellfish. Bull. Environ. Con-tom. Toxicol. 33: 561–567.

    Article  CAS  Google Scholar 

  • Oikawa, S. and Itazawa, Y. (1985) Gill and body surface areas of the carp in relation to body mass, with special reference to the metabolic-size relationship. J. Exp. Biol. 117: 1–14.

    Google Scholar 

  • Oliver, B.G. and Niimi, A. (1983) Bioconcentration of chlorobenzenes from water to rainbow trout: correlation with partition coefficients and environmental residues. Environ. Sci. Technol. 17:287–291.

    Article  CAS  Google Scholar 

  • Opperhuizen, A. (1991) Bioconcentration and biomagnification: is a distinction necessary? In: Nagel, R. and Loskill, R. (eds.) Bioaccumulation in aquatic systems. Contributions to the assessment. VCH, Weinheim, p. 67–80.

    Google Scholar 

  • Opperhuizen, A., Velde, E.W. van den, Gobas, EA.P.C., Liem, D.A.K. and Steen, J.M.D. van den (1985) Relationships between bioconcentration in fish and steric factors of hydrophobic chemicals. Chemosphere 14:1871–1896.

    Article  CAS  Google Scholar 

  • Paling, J.E. (1968) A method of estimating the relative volumes of water flowing over the different gills of a freshwater fish. J. Exp. Biol. 48:533–544.

    PubMed  CAS  Google Scholar 

  • Phillips, D.J.H. (1980) Quantitative aquatic biological indicators — their use to monitor trace metal and organochlorine pollution. Applied Science Publishers, London, 488 pp.

    Google Scholar 

  • Phillips, D.J.H. (1993) Bioaccumulation. In: Calow, P. (ed.) Handbook ofecotoxicology. Vol. 1, Blackwell, Oxford, p. 378–396.

    Google Scholar 

  • Piiper, J. and Scheid, P. (1984) Model analysis of gas transfer in fish gills. In: Hoar, W.S. and Randall D.J. (eds.) Fish physiology. Vol. X, Part A. Academic Press, London, p. 229–262.

    Google Scholar 

  • Piiper, J., Scheid, P., Perry, S.F. and Hughes, G.M. (1986) Effective and morphological oxygen-diffusing capacity of the gills of the elasmobranch Scyliorhinus stellaris. J. Exp. Biol. 123:27–41.

    Google Scholar 

  • Plakas, S.M., McPhearson, R.M. and Guarino, A.M. (1988) Disposition and bioavailability of H3-tetracycline in the channel catfish (Ictalurus punctatus). Xenobiotica 18:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Price, J.W. (1931) Growth and gill development in the small mouthed black bass, Micropterus dolomieui Lacepede. Stud. Ohio State Univ. 4:1–46.

    Google Scholar 

  • Pritchard, J.B. and Bend, J.R. (1991) Relative roles of metabolism and renal excretory mechanisms in xenobiotic elimination by fish. Environ. Health Perspect. 90:85–92.

    Article  PubMed  CAS  Google Scholar 

  • Reinert, R.E. and Bergman, H.L. (1974) Residues of DDT in lake trout (Salvelinus namaycush) and coho salmon (Oncorhynchus kisutch) from the Great Lakes. J. Fish Res. Bd. Can. 31: 191–199.

    Article  CAS  Google Scholar 

  • Saarikosi, J., Lindstrom, R., Tyynela, M. and Viluksela, M. (1986) Factors affecting the absorption of phenolics and carboxylic acids in the guppy (Poecilia reticulata). Ecotox. Environ. Safety 11:158–173.

    Article  Google Scholar 

  • Satchell, G.H. (1991) Physiology and form of fish circulation. Cambridge University Press, Cambridge, 235 pp.

    Book  Google Scholar 

  • Saunders, R.L. (1962) The irrigation of the gills in fishes. II. Efficiency of oxgen uptake in relation to respiratory flow acitvity and concentrations of oxygen and carbon dioxide. Can. J. Zool. 40:817–862.

    Article  CAS  Google Scholar 

  • Schrap, S.M. (1991) Bioavailability of organic chemicals in the aquatic environment. Comp. Biochem. Physiol. 100C:13–16.

    CAS  Google Scholar 

  • Sidell, B.D. and Hazel, J.R. (1987) Temperature affects the diffusion of small molecules through cytosol of fish muscle. J. Exp. Biol. 129: 191–203.

    PubMed  CAS  Google Scholar 

  • Sire, M.F., Lutton, C. and Vernier, J.M. (1981) New views on intestinal absorption of lipids in teleostean fishes: An ultrastructural and biochemical study in the rainbow trout. J. Lipid Res. 22:81–94.

    PubMed  CAS  Google Scholar 

  • Södergren, A. and Svensson, B. (1973) Uptake and accumulation of DDT and PCB by Ephemera danica (Ephemeroptera) in continuous-flow systems. Bull. Environ. Contam. Toxicol. 9:345–350.

    Article  PubMed  Google Scholar 

  • Spigarelli, S.A., Thommes, M.M., and Prepejchal, W. (1983) Thermal and metabolic factors affecting PCB uptake by adult brown trout. Environ. Sci. Technol. 17:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Streit, B. (1979a) Uptake, accumulation and release of organic pesticides by benthic invertebrates. 2. Reversible accumulation of lindane, paraquat and 2,4-D from aqueous solution by invertebrates and detritus. Arch. Hydrobiol. Suppl. 55:324–348.

    Google Scholar 

  • Streit, B. (1979b) Uptake, accumulation and release of organic pesticides by benthic invertebrates. 3. Distribution of“C-atrazine and ”C-lindane in an experimental 3-step food chain microcosm. Arch. Hydrobiol. Suppl. 55: 374–400.

    Google Scholar 

  • Streit, B. (1990) Chemikalien im Wasser: Experimente and Modelle zur Bioakkumulation bei SĂĽĂźwassertieren. In: Kinzelbach, R. and Friedrich, G. (eds.) Limnologie aktuell, Band 1: Biologie des Rheins. G. Fischer, Stuttgart, p. 107–130.

    Google Scholar 

  • Streit, B. (1992) Bioaccumulation processes in ecosystems. Review. Experientia 48:955–970. Streit, B. (1994) Lexikon Ă–kotoxikologie. 2. Aufl., VCH, Weinheim, 899 pp.

    Google Scholar 

  • Streit, B. (1998) Community ecology and population interactions in freshwater systems. In: SchĂĽĂĽrmann, G. and Markert, B. (eds.) Ecotoxicology. John Wiley and Sons Inc., New York, and Spektrum Akademischer Verlag, Heidelberg, p. 133–161.

    Google Scholar 

  • Streit, B. and Schwoerbel, J. (1976/77) Experimentelle Untersuchungen ĂĽber die Akkumulation von Herbiziden bei benthischen SĂĽsswassertieren. Verh. Ges. Ă–kol. 1976:371–383.

    Google Scholar 

  • Streit, B. and SirĂ©, E.-O. (1993) On the role of blood proteins for uptake, distribution, and clearance of waterborne lipophilic xenobiotics by fish: A linear system analysis. Chemosphere 26: 1031–1039.

    Article  CAS  Google Scholar 

  • Streit, B. and Winter, S. (1993) Cadmium uptake and compartmental time characteristics in the freshwater mussel Anodonta anatina. Chemosphere 26:1479–1490.

    Article  CAS  Google Scholar 

  • Streit, B., SirĂ©, E.-O., Kohlmaier, G.H., Badeck, F.W. and Winter, S. (1991) Modeling ventilation efficiency of teleost fish gills for pollutants with high affinity to plasma proteins. Ecol. Model. 57:237–262.

    Article  CAS  Google Scholar 

  • Suedel, B.C., Boraczek, J.A., Peddicord, R.K., Clifford, P.A. and Dillon, T.M. (1994) Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Environ. Contain. Toxicol. 136: 21–89.

    Article  CAS  Google Scholar 

  • Thomann, R.V. (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23:699–707.

    Article  CAS  Google Scholar 

  • Thomann, R.V. and Connolly, J.P. (1984) Model of PCB in the Lake Michigan lake trout food chain. Environ. Sci. Technol. 18:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Thomann, R.V., Connolly, J.P. and Parkerton, T.F. (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ. Toxicol. Chem. 11: 615–629.

    Article  CAS  Google Scholar 

  • Tjalve, H., Gottofrey, J. and Borg, K. (1988) Bioaccumulation, distribution and retention of Ni in the brown trout (Salmo trautta). Water Res. 22:1129–1136.

    Article  Google Scholar 

  • Vetter, R.D., Carey, M.C., Patton and J.S. (1985) Coassimilation of dietary fat and benzo[a]py-rene in the small intestine: an absorption model using the killifish. J. Lipid Res. 26:428–434.

    PubMed  CAS  Google Scholar 

  • Veith, G.D. and Kosian, P. (1983) Estimating bioconcentration potential from octanol/water partition coefficients. In: MacKay, D. et al. (eds.) Physical behavior of PCBs in the Great Lakes. Ann Arbor Science Publishers, Ann Arbor.

    Google Scholar 

  • Veith, G.D., DeFoe, D.L. and Bergstedt, B.V. (1979) Measuring and estimating the bio-concentration factor of chemicals in fish. J Fish. Res. Board Can. 36:1040–1048.

    Article  CAS  Google Scholar 

  • Weininger, D. (1978) Accumulation of PCBs by lake trout in Lake Michigan. Ph.D. thesis, University of Wisconsin-Madison, Madison, WI. 1–232.

    Google Scholar 

  • Woodwell, G.M. (1967) Toxic substances and ecological cycles. Sci. Amer. 216:24–31.

    Article  PubMed  CAS  Google Scholar 

  • Wootton, R.J. (1990) Ecology of teleost fishes. Chapman and Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Streit, B. (1998). Bioaccumulation of contaminants in fish. In: Braunbeck, T., Hinton, D.E., Streit, B. (eds) Fish Ecotoxicology. EXS, vol 86. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8853-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8853-0_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9802-7

  • Online ISBN: 978-3-0348-8853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics