Skip to main content

Pharmacokinetics of Drug-in-Polymer Matrix-Based Nanoparticulate Drug Delivery System

  • Chapter
  • First Online:
Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems

Abstract

The application of nanotechnology in drug delivery is gaining much attention from researchers due to their plethora of benefits especially in the improvement of pharmacokinetics as compared to conventionally available dosage forms. In this line, numerous advanced approaches have been adopted that demonstrated excellent applicability in the drug delivery systems. Despite this, they are lacking the foremost limitations related to absorption, distribution, metabolism, and excretion of the drug that affect the therapeutics of the active. Noteworthily, polymeric materials offer several advantages such as biocompatibility, biodegradability, and other tunable properties, which are playing a crucial function in advanced drug delivery systems. In recent times, a drug-in-polymer matrix (DPM)-based nanoparticulate drug delivery system (NPDDS) is majorly employed for designing different types of advanced formulations. Herein, polymeric materials are widely utilized as drug carriers that assist to accomplish the intended pharmacokinetic parameter with minimum adverse effects. Notably, published pieces of literature divulged that the DPM can effortlessly modulate the absorption, distribution, metabolism, and excretion of a drug as compared to other reported advanced approaches in drug delivery. Thus, in this chapter, we have provided the essentials for the pharmacokinetics of DPM-based NPDDS. In addition, we have discussed the different types of dosage forms based on the DPM system and their modified pharmacokinetics. Finally, we have shed light on current challenges and future prospects of DPM-based NPDDS. In conclusion, the DPM-based NPDDS can modify pharmacokinetic parameters, namely, absorption, distribution, metabolism, and excretion of the administered active. In the future, this chapter will furnish a new way of designing DPM-based advanced dosage forms with acceptable pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang W-W, Pierstorff E. Reservoir-based polymer drug delivery systems. J Lab Autom. 2012;17(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  2. Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design a review. J Saudi Chem Soc. 2014;18(2):85–99.

    Article  CAS  Google Scholar 

  3. Liu M, et al. Recent advances in electrospun for drug delivery purpose. J Drug Target. 2019;27(3):270–82.

    Article  CAS  PubMed  Google Scholar 

  4. Saha RN, et al. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol. 2010;27(7):215–31.

    Article  CAS  PubMed  Google Scholar 

  5. Mishra M, et al. Nanotechnology: revolutionizing the science of drug delivery. Curr Pharm Des. 2018;24(43):5086–107.

    Article  CAS  PubMed  Google Scholar 

  6. Nangare S, et al. Pharmaceutical applications of electrospinning. In: Annales pharmaceutiques francaises. Elsevier; 2020.

    Google Scholar 

  7. Shitole MM, et al. Pharmaceutical applications of electrospun nanofibers: a state- of-the-art review. Asian Journal of Pharmacy and Technology. 2020;10(3):187–201.

    Article  Google Scholar 

  8. Nangare S, Dugam S. Smart invasome synthesis, characterizations, pharmaceutical applications, and pharmacokinetic perspective: a review. Future J Pharm Sci. 2020;6(1):1–21.

    Google Scholar 

  9. Dugam S, et al. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. Future J Pharm Sci. 2021;7(1):1–26.

    Google Scholar 

  10. Nangare S, et al. Development of novel freeze-dried mulberry leaves extract-based transfersomal gel. Turk J Pharm Sci. 2019:98624. https://doi.org/10.4274/tjps.

  11. Powar TA, Hajare AA. QbD based approach to enhance the in-vivo bioavailability of ethinyl estradiol in Sprague-Dawley rats. Acta Chim Slov. 2020;67(1):283–303.

    Article  CAS  PubMed  Google Scholar 

  12. Shitole MM, et al. Review on drug delivery applications of ethosomes: Current developments and prospects:(TJPS-2021–0031. R1). Thai J Pharm Sci. 2021E;

    Google Scholar 

  13. Mahajan HS, Patil PH. Central composite design-based optimization of lopinavir vitamin E-TPGS micelle: in vitro characterization and in vivo pharmacokinetic study. Colloids Surf B: Biointerfaces. 2020;194:111149.

    Article  CAS  PubMed  Google Scholar 

  14. Dugam S, et al. Carbon dots: a novel trend in pharmaceutical applications. In: Annales Pharmaceutiques Françaises. Elsevier; 2020.

    Google Scholar 

  15. Tade RS, et al. Recent advancement in bio-precursor derived graphene quantum dots: synthesis, characterization and toxicological perspective. Nanotechnology. 2020;31(29):292001.

    Article  CAS  PubMed  Google Scholar 

  16. Tade R, Nangare SN, Patil PO. Fundamental aspects of graphene and its biosensing applications. Funct Compos Struct. 2021;

    Google Scholar 

  17. Nangare S, et al. Silk industry waste protein: isolation, purification and fabrication of electrospun silk protein nanofibers as a possible nanocarrier for floating drug delivery. Nanotechnology. 2020;32(3):035101.

    Article  CAS  Google Scholar 

  18. Nangare S, et al. Pharmaceutical applications of citric acid. Future J Pharm Sci. 2021;7(1):1–23.

    Google Scholar 

  19. Shitole M, et al. Pharmaceutical applications of silk sericin. In: Annales pharmaceutiques francaises. Elsevier; 2020.

    Google Scholar 

  20. Miele E, et al. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637.

    PubMed  PubMed Central  Google Scholar 

  21. Patra JK, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Article  CAS  Google Scholar 

  22. Karade PG, Jadhav NR. Colon targeted curcumin microspheres laden with ascorbic acid for bioavailability enhancement. J Microencapsul. 2018;35(4):372–80.

    Article  CAS  PubMed  Google Scholar 

  23. Shetab Boushehri MA, Lamprecht A. Nanoparticles as drug carriers: current issues with in vitro testing. Nanomedicine. 2015;10(21):3213–30.

    Article  CAS  PubMed  Google Scholar 

  24. Feitosa RC, et al. Pharmacokinetic aspects of nanoparticle-in-matrix drug delivery systems for oral/buccal delivery. Front Pharmacol. 2019;10:1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif Cells Nanomed Biotechnol. 2019;47(1):524–39.

    Article  CAS  PubMed  Google Scholar 

  26. Son G-H, Lee B-J, Cho C-W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig. 2017;47(4):287–96.

    Article  CAS  Google Scholar 

  27. Bacaita S, et al. Drug release kinetics from polymer matrix through fractal approximation of motion. Smart Mater Res. 2012;

    Google Scholar 

  28. Marinescu L, et al. Optimized synthesis approaches of metal nanoparticles with antimicrobial applications. J Nanomater. 2020;2020

    Google Scholar 

  29. Macha IJ, et al. Drug delivery from polymer-based nanopharmaceuticals—an experimental study complemented by simulations of selected diffusion processes. Front Bioeng Biotechnol. 2019;7:37.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao Q-H, Qiu L-Y. An overview of the pharmacokinetics of polymer-based nanoassemblies and nanoparticles. Curr Drug Metab. 2013;14(8):832–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bhatt P, et al. Polymers in drug delivery: an update. In: Applications of polymers in drug delivery. Elsevier; 2021. p. 1–42.

    Google Scholar 

  32. Kamaly N, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gadalla HH, et al. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy. Int J Pharm. 2020;577:119070.

    Article  CAS  PubMed  Google Scholar 

  34. Piazzini V, et al. Enhanced dissolution, permeation and oral bioavailability of aripiprazole mixed micelles: in vitro and in vivo evaluation. Int J Pharm. 2020;583:119361.

    Article  CAS  PubMed  Google Scholar 

  35. Jadhav P, et al. Bioavailability enhancement of olmesartan medoxomil using hot-melt extrusion: in-silico, in-vitro, and in-vivo evaluation. AAPS PharmSciTech. 2020;21(7):1–17.

    Google Scholar 

  36. Xi Z, et al. Evaluation of the solid dispersion system engineered from mesoporous silica and polymers for the poorly water soluble drug indomethacin: in vitro and in vivo. Pharmaceutics. 2020;12(2):144.

    Article  CAS  PubMed Central  Google Scholar 

  37. Khan MA, et al. Clarithromycin loaded lipid polymer hybrid nanoparticles: fabrication, in vitro and in vivo evaluation. Pak J Pharm Sci. 2020;33(3):1303–13.

    CAS  Google Scholar 

  38. Dong W, et al. Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique. Asian J Pharm Sci. 2018;13(6):546–54.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-Dhubiab BE. In vitro and in vivo evaluation of nano-based films for buccal delivery of zolpidem. Braz Oral Res. 2016;30

    Google Scholar 

  40. Anwer MK, et al. Preparation, evaluation and bioavailability studies of eudragit coated PLGA nanoparticles for sustained release of eluxadoline for the treatment of irritable bowel syndrome. Front Pharmacol. 2017;8:844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tu L, et al. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int J Pharm. 2020;578:119105.

    Article  PubMed  CAS  Google Scholar 

  42. Dahmani FZ, et al. Enhanced oral bioavailability of paclitaxel in pluronic/LHR mixed polymeric micelles: preparation, in vitro and in vivo evaluation. Eur J Pharm Sci. 2012;47(1):179–89.

    Article  CAS  PubMed  Google Scholar 

  43. Kumar V, Chaudhary H, Kamboj A. Development and evaluation of isradipine via rutin-loaded coated solid–lipid nanoparticles. Interv Med Appl Sci. 2018;10(4):236–46.

    PubMed  PubMed Central  Google Scholar 

  44. Al-Dhubiab BE, et al. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf B: Biointerfaces. 2015;136:878–84.

    Article  CAS  PubMed  Google Scholar 

  45. Augustine R, et al. Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination. Acta Biomater. 2018;74:344–59.

    Article  CAS  PubMed  Google Scholar 

  46. Chai R, et al. In vitro and in vivo evaluation of Olmesartan Medoxomil Microcrysta ls and nanocrystals: preparation, characterization, and Pharmacokinet ic comparison in beagle dogs. Curr Drug Deliv. 2019;16(6):500–10.

    Article  CAS  PubMed  Google Scholar 

  47. Dhaliwal S, et al. Mucoadhesive microspheres for gastroretentive delivery of acyclovir: in vitro and in vivo evaluation. AAPS J. 2008;10(2):322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gu M, et al. Improved oral bioavailability and anti-chronic renal failure activity of chrysophanol via mixed polymeric micelles. J Microencapsul. 2021;38(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  49. Vijaykumar N, et al. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. Pharm Dev Tech. 2009;14:290–8.

    Article  CAS  Google Scholar 

  50. Rana P, Murthy R. Formulation and evaluation of mucoadhesive buccal films impregnated with carvedilol nanosuspension: a potential approach for delivery of drugs having high first-pass metabolism. Drug Deliv. 2013;20(5):224–35.

    Article  CAS  PubMed  Google Scholar 

  51. Han H-K, Lee B-J, Lee H-K. Enhanced dissolution and bioavailability of biochanin a via the preparation of solid dispersion: in vitro and in vivo evaluation. Int J Pharm. 2011;415(1–2):89–94.

    Article  CAS  PubMed  Google Scholar 

  52. Javed I, et al. Synthesis, characterization and evaluation of lecithin-based nanocarriers for the enhanced pharmacological and oral pharmacokinetic profile of amphotericin B. J Mater Chem B. 2015;3(42):8359–65.

    Article  CAS  PubMed  Google Scholar 

  53. Jiao Y, et al. In vitro and in vivo evaluation of oral heparin–loaded polymeric nanoparticles in rabbits. Circulation. 2002;105(2):230–5.

    Article  CAS  PubMed  Google Scholar 

  54. Kaur A, et al. Thiolated chitosan nanoparticles for augmented oral bioavailability of gemcitabine: preparation, optimization, in vitro and in vivo study. J Drug Deliv Sci Technol. 2021;61:102169.

    Article  CAS  Google Scholar 

  55. Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin- based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J. 2020;28(3):349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanif M, et al. Enhancement of oral bioavailability of ibandronate through gastroretentive raft forming drug delivery system: in vitro and in vivo evaluation. Int J Nanomedicine. 2020;15:4847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar R, et al. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: intestinal permeability and pharmacokinetic evaluation. Eur J Pharm Sci. 2020;153:105466.

    Article  CAS  PubMed  Google Scholar 

  58. Shaker MA, et al. Enhancement of atorvastatin oral bioavailability via encapsulation in polymeric nanoparticles. Int J Pharm. 2021;592:120077.

    Article  CAS  PubMed  Google Scholar 

  59. Chaurasia S, et al. Potential of cationic-polymeric nanoparticles for oral delivery of naringenin: in vitro and in vivo investigations. J Pharm Sci. 2018;107(2):706–16.

    Article  CAS  PubMed  Google Scholar 

  60. Cheng H, et al. Design of self-polymerized insulin loaded poly (n-butylcyanoacrylate) nanoparticles for tunable oral delivery. J Control Release. 2020;321:641–53.

    Article  CAS  PubMed  Google Scholar 

  61. Jin X, et al. In vitro and in vivo evaluation of 10-hydroxycamptothecin-loaded poly (n-butyl cyanoacrylate) nanoparticles prepared by miniemulsion polymerization. Colloids Surf B: Biointerfaces. 2018;162:25–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, for providing the necessary facilities.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nangare, S. et al. (2022). Pharmacokinetics of Drug-in-Polymer Matrix-Based Nanoparticulate Drug Delivery System. In: Patel, J.K., Pathak, Y.V. (eds) Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems . Springer, Cham. https://doi.org/10.1007/978-3-030-83395-4_9

Download citation

Publish with us

Policies and ethics