Skip to main content
Log in

Surface deformations of 24 January 2020 Sivrice (Elazığ)–Doğanyol (Malatya) earthquake (Mw = 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures

  • Original Paper
  • Published:
Mediterranean Geoscience Reviews Aims and scope Submit manuscript

Abstract

On Friday, January 24, 2020 at 20.55:11 local time (17:55 UTC), an earthquake with a magnitude of Mw = 6.8 has occurred in Sivrice district of Elazığ (Eastern Turkey). Focal mechanism solution is consistent with pure left-lateral strike-slip faulting; the location of the epicenter and fault mechanism suggest deformation along the Pütürge segment of the East Anatolian Fault Zone. A 10-day fieldwork was carried out along the Pütürge segment to study surface deformation; the geometry of the surface rupture and other seismic geomorphological structures were mapped and studied in detail. The field data are also correlated with satellite images. This paper, therefore, presents classification of seismic geomorphological structures and discuss intimate relationship between fault geometry and stress field in the region. Seismic geomorphological deformation and related features of the Sivrice (Elazığ) earthquake are observed in the area between Gezin (Elazığ) and Ormaniçi (Pütürge) villages; they are classified into two as seismotectonic and seismo-gravitational features. Field observations confirm that seismo-gravitational structures develop along both Gezin-Sivrice–Doğanbağı and Doğanbağı–Çevrimtaş–Ilıncak–Koldere–Ormaniçi sections of the Pütürge segment, while surface rupture is mapped as seismotectonic structure only along the Doğanbağı–Çevrimtaş–Ilıncak–Koldere–Ormaniçi section. Small-scale landslides, rock falls, feather cracks along asphaltic roads, and laterally discontinues ground failure-related features are common seismo-gravitational structures that developed along the fault zone. In addition, small-scale lateral spreading and liquefaction structures are common especially in areas where fault-perpendicular streams meet the Karakaya Dam reservoir. The surface rupture is mapped as stepping and overlapping en échelon fractures along elongated pressure ridges between Çevrimtaş and Doğanbağ villages, to northwest of Ilıncak village, along 1.5-km-long pressure ridge between Topaluşağı and Doğanyol, across the elongated hill that developed on an alluvial fan to the northwest of Doğanyol and in the area between Koldere and Ormaniçi villages. Surface fractures deforming the pressure ridges are all aligned parallel to the long axes of the ridges and display reverse components that give rise to small-scale pop-up structures. Interferometric SAR (DInSAR) studies indicate a 10-cm uplift in the northwestern block of the fault and a 6-cm subsidence in the southeast block. The difference in vertical movements between two blocks of the fault is interpreted to suggest that at least 30-km-long section of the Pütürge segment in the area between southwest of Sivrice and Pütürge is broken during the main shock. Although the focal mechanism solution of the main shock gives pure left-lateral strike-slip faulting, there is no significant left-lateral displacement observed during the fieldwork. This can be explained by the following: (1) left-lateral strike-slip displacement was not able to reach the surface; (2) left-lateral torque movement of the fault around a vertical axis during the earthquake, (3) restraining bend nature of the Pütürge segment, or (4) the presence of Pütürge metamorphics along the fault strike. It is also important to note that along most part of the Pütürge segment where surface rupture is observed, talus, colluvial or alluvial fan sediments are exposed; unconsolidated and/or poorly consolidated nature of these sediments may also be counted as one of the main reason for not observing horizontal displacement on the surface. When we compare these surface deformations with the surface ruptures that occurred in the last 100 years in Turkey, we suggest that the formation of the surface deformations is variable depending on: (1) the fault type and the state of regional stress, (2) the magnitude of the earthquake, (3) the duration time of the earthquake and (4) the geomorphologic feature of landscape in relation to the lithologic and structural features of the rock units along the active fault zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Koçyiğit et al. 2003; Çolak et al. 2012)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Afet ve Acil Durum Yönetimi Başkanlığı (AFAD) Deprem Dairesi Başkanlığı (2020) 24 Ocak 2020 Sivrice (Elazığ) Mw 6.8 Depremine İlişkin Ön Değerlendirme Raporu. 9 s. https://deprem.afad.gov.tr/downloadDocument?id=1825. Accessed 20 July 2020

  • Aksoy E, İnceoz M, Koçyiğit A (2007) Lake Hazar basin: a negative flower structure on the East Anatolian fault system (EAFS), SE Turkiye. Turk J Earth Sci 16:319–338

    Google Scholar 

  • Aktuğ B, Özener H, Dogru A, Sabuncu A, Turgut B, Halıcıoğlu K, Yılmaz O, Havazlı E (2016) Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J Geodyn 94–95:1–12

    Google Scholar 

  • Aktimu HT, Oral A (1981) Şiro çayı ve dolayının yerbilim verileri. Institute of Mineral Research and Exploration Report, 6883, Ankara

  • Ambraseys N (1988) Engineering seismology. J Earthq Eng Struct Dyn 17:1–106

    Google Scholar 

  • Ambraseys NN, Jackson J (1998) Faulting associated with historical and recent earthquakes in the eastern Mediterranean region. Geophys J Int 133:390–406

    Google Scholar 

  • Ambraseys NN, Finkel C (1995) Seismicity of Turkey and neighbouring regions 1500–1800. Geophys J Int 133:390–406

    Google Scholar 

  • Arpat E, Şaroğlu F (1972) Doğu Anadolu Fayı ile ilgili bazı gözlemler ve düşünceler. Maden Tetkik ve Arama Enstitüsü, Ankara, pp 44–50

    Google Scholar 

  • Arpat AE, Şaroğlu F (1975) Türkiye’de bazı önemli genç tektonik olaylar. Türkiye Jeoloji Kurumu Bülteni 18:29–41

    Google Scholar 

  • Audemard FA, De Santis F (1991) Survey of liquefaction structures induced by recent moderate earthquakes. Bull Int Assoc Eng Geol 44:5–16

    Google Scholar 

  • Baştürk NB, Özel NM, Altınok Y, Duman TY (2017) Türkiye ve yakın çevresi için geliştirilmiş tarihsel dönem (MÖ 2000–MS 1900-) deprem katalogu. In: Duman TY (ed) Türkiye Sismotektonik Haritası Açıklama Kitabı, Özel Yayınlar Serisi 34. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, p 239

    Google Scholar 

  • Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Deprem Mühendisliği Ana Bilim Dalı (2020) 24 Ocak 2020 (20:55) Elazığ-Sivrice Depremi Sismotektonik Yapı, Kuvvetli Deprem Yer Hareketi Dağılım Özellikleri ve Bina Hasar Tahminleri Ön Rapor, 20 s

  • Bulut F, Bohnhoff M, Eken T, Janssen C, Kılıç T, Dresen G (2012) The East Anatolian Fault Zone: seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. J Geophys Res 117(B07304):1–16

    Google Scholar 

  • Çelik H (2008) Doğu Anadolu Fay Sistemi’nde Sivrice Fay Zonu’nun Palu-Hazar Gölü (Elazığ) Arasındaki Bölümünde Atımla İlgili Yeni Arazi Bulgusu. F.Ü. Fen ve Mühendislik Bilimleri Dergisi 20(2):305–314

    Google Scholar 

  • Çetin H, Güneyli H, Mayer L (2003) Paleosismology of the Palu-Lake Hazar segment of the East Anatolian Fault Zone, Turkey. Tectonophysics 374:163–197

    Google Scholar 

  • Cheloni D, Akıncı A (2020) Source modelling and strong ground motion simulations for the 24 January 2020, M w 6.8 Elazığ earthquake, Turkey. Geophys J Int 223(2):1054–1068

    Google Scholar 

  • Çolak S, Aksoy E, Koçyiğit A, İnceöz M (2012) The Palu-Uluova Strike-Slip Basin in the East Anatolian fault system, Turkey: its transition from the Palaeotectonic to Neotectonic Stage. Turk J Earth Sci 21:547–570

    Google Scholar 

  • Dewey JF, Hempton MR, Kidd WSF, Şaroğlu F, Şengör AMC (1986) Shortening of continental lithosphere: the neotectonics of eastern Anatolia: a young collision zone. In: Coward MP, Ries AC (eds) Collision tectonics, 19th edn. Geological Society, London, pp 3–36

    Google Scholar 

  • Dramis F, Blumetti AM (2005) Some considerations concerning seismic geomorphology and paleoseismology. Tectonophysics 408(1–4):177–191

    Google Scholar 

  • Duman TY, Emre Ö (2013) The East Anatolian Fault: geometry, segmentation and jog characteristics. In: Robertson AHF, Parlak O, Ünlügenç UC (eds) Geological development of Anatolia and the Easternmost Mediterranean Region, vol 372. Geological Society, London, pp 495–529. https://doi.org/10.1144/sp372.14

    Chapter  Google Scholar 

  • Duman TY, Emre Ö, Özalp S, Elmacı H, Olgun Ş (2012) 1:250,000 Ölçekli Türkiye Diri Fay Haritası Serisi, Elâzığ (NJ 37–7) Paftası, Seri No: 45. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara

    Google Scholar 

  • Duman TY, Emre Ö, Özalp S, Çan T, Olgun Ş, Elmacı H, Şaroğlu F (2017) Türkiye ve Yakın Çevresindeki Diri Faylar ve Özellikleri. In: Duman TY (eds) Türkiye Sismotektonik Haritası Açıklama Kitabı. Maden Tetkik ve Arama Genel Müdürlüğü Özel Yayınlar Serisi-34, Ankara-Türkiye, 12 s

  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, Şaroğlu F (2013) Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1:1.250.000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye.

  • Ergin K, Güçlü U, Uz Z (1967) A catalog of earthquake for Turkey and surrounding area (11 A.D. to 1964 A.D.). İTÜ Faculty of Mining Enginering, İstanbul

    Google Scholar 

  • ESA (European Space Agency) (2020). https://scihub.copernicus.eu/dhus/#/home. Accessed 14 June 2020

  • Eyidoğan H, Güçlü U, Utku Z, Değirmenci E (1991) Türkiye Büyük Depremleri Makro-Sismik Rehberi (1900–1988). İTÜ Maden Fakültesi, İstanbul

    Google Scholar 

  • Gökçeoğlu C, Şahmaran M, Unutmaz B, Aldemir A, Koçkar MK, Sandıkkaya A, İçen A (2020) 24 Ocak 2020 Elâzığ Sivrice Depremi (Mw= 6.8) Ön İnceleme Raporu. Hacettepe Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Ankara, p 44

    Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Google Scholar 

  • Güneyli H (2002) Doğu Anadolu Fay Sistemi, Palu-Hazar Gölü Segmentinin Neotektoniği ve Paleosismolojisi, Doktora Tezi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü

  • Gürsoy H, İnan S, Tatar O, Ünlügenç UC, Demirkol C (1998) Surface deformation, liquefaction-induced features and tectonic setting of 27 June 1998 Adana-Ceyhan earthquake. In: 3rd International Turkish Geology Symposium, Abstracts, METU, 31 August-4 September 1998, Ankara, p 323

  • Helz RL (2005) Monitoring ground deformation from space. US Department of the Interior, Washington

    Google Scholar 

  • Hempton MR (1985) Structure and deformation history of Bitlis suture near lake Hazar, southeastern Turkey. Geol Soc Ame Bull 96:233–243

    Google Scholar 

  • Hempton MR, Dunne L (1984) Sedimentation in pull-apart basins: active examples in Eastern Turkey. J Geol 92:513–530

    Google Scholar 

  • Herece E (2008) Doğu Anadolu Fayı (DAF) Atlası. MTA Genel Müdürlüğü, Özel Yayın Serisi, No: 13, Ankara, 359 s

  • Herece E, Akay E (1992) Karlıova-Çelikhan arasında Doğu Anadolu Fayı. In: Proceeding of the 9th Petroleum Congress of Turkey. 17–21 February 1992, Ankara, Turkey, pp 361–372

  • İTÜ'lü Akademisyenlerden Elâzığ ve Malatya Depremine İlişkin Değerlendirme (2020) 11 Şubat 2020. https://www.haberturk.com/itulu-akademisyenlerden-elazig-depremine-iliskin-saha-raporu-2568984. Accessed 31 Jan 2020

  • Jamalreyhani M, Büyükakpınar P, Cesca S, Dahm T, Sudhaus H, Rezapour M, Heimann S (2020) Seismicity related to the eastern sector of Anatolian escape tectonic: the example of the 24 January 2020 Mw 6.77 Elâzığ-Sivrice earthquake. Solid Earth Discussions, pp 1–22.

  • Kalafat D, Zülfikar C, Vuran E, Kamer Y (2010) 8 Mart 2010 Başyurt-Karakoçan (Elâzığ) Depremi. Boğaziçi Üniversitesi, Istanbul, p 65

    Google Scholar 

  • Kalafat D, Güneş Y, Kekovalı K, Yılmazer M (2011) A revised and extented earthquake cataloque for Turkey since 1900 (M ≥ 4.0). Boğaziçi University, Istanbul, p 640 (in Turkish)

    Google Scholar 

  • KANDİLLİ (2020) B.U. Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü. https://www.koeri.boun.edu.tr/. Accessed 20 Feb 2020

  • Karabacak V, Önder Y, Altunel E, Yalçıner CC, Akyüz HS, Kıyak NG (2011) Doğu Anadolu Fay Zonunun güney batı uzanımının paleosismolojisi ve ilk kayma hızı. In: Aktif Tektonik Araştırma Grubu Onbeşinci Çalıştayı (ATAG-15), Çukurova Üniversitesi, 19–22 Ekim 2011, Bildiri özleri Kitabı, 17, Karataş-Adana.

  • Khalifa A, Çakır Z, Owen L, Kaya Ş (2018) Morphotectonic analysis of the East Anatolian Fault, Turkey. Turk J Earth Sci 27:110–126

    Google Scholar 

  • Koçyiğit A, Rojay B, Cihan M, Özacar A (2001b) The June 6, 2000, Orta (Çankırı, Turkey) Earthquake: Sourced from a New Antithetic Sinistral Strike-slip Structure of the North Anatolian Fault System, the Dodurga Fault Zone. Turk J Earth Sci 10(2001):69–82

    Google Scholar 

  • Koçyiğit A, Yılmaz A, Adamia S, Kuloshvılı S (2001) Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodin Acta 14:177–195

    Google Scholar 

  • Köküm M, Özçelik F (2020) Tarihsel Depremlerin Yeniden Değerlendirilmesine Örnek Bir Çalışma: 1789 Palu (Elazığ) Depremi, Doğu Anadolu, Türkiye. Maden Tetkik ve Arama Dergisi 161:1–10

    Google Scholar 

  • Kürçer A, Elmacı H, Yıldırım N, Özalp S (2020) 24 Ocak 2020 Sivrice (Elâzığ) Depremi (Mw=6,8) Saha Gözlemleri ve Değerlendirme Raporu. MTA Jeoloji Etütleri Dairesi, New York, p 41

    Google Scholar 

  • McKenzie D (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40(1):25–32

    Google Scholar 

  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gürkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Şanlı İ, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern mediterranean and Caucasus. J Gephys Res 105:5695–5719

    Google Scholar 

  • Melgar D, Ganas A, Taymaz T, Valkaniotis S, Crowell BW, Kapetanidis V, Öcalan T (2020) Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophys J Int 223(2):862–874

    Google Scholar 

  • Nalbant SS, McCloskey J, Steacy S, Barka AA (2002) Stress accumulation and increased seismic risk in eastern Turkey. Earth Planet Sci Lett 195:291–298

    Google Scholar 

  • Örgülü G, Aktar M, Türkelli N, Sandvol E, Barazangi M (2003) Contribution to the seismotectonics of eastern Turkey from moderate and small size events. Geophys Res Lett. https://doi.org/10.1029/2003GL018258

    Article  Google Scholar 

  • Özkaymak Ç, Sözbilir H, Bozkurt E, Dirik K, Topal T, Alan H, Çağlan D (2011) Seismic geomorphology of October 23, 2011 Tabanlı-Van earthquake and its relation to active tectonics of East Anatolia. Jeoloji Mühendisliği Dergisi 35(2):175–200

    Google Scholar 

  • Özener H, Arpat E, Ergintav S, Doğru A, Çakmak R, Turgut B, Doğan U (2010) Kinematics of the eastern part of the North Anatolian Fault Zone. J Geodyn 49:141–150

    Google Scholar 

  • Pousse-Beltran L, Nissen E, Bergman EA, Cambaz MD, Gaudreau É, Karasözen E, Tan F (2020) The 2020 Mw 6.8 Elâzığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophys Res Lett 47(13):2020088136

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Özener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Şaroğlu F, Yılmaz Y (1987) Doğu Anadolu’da Neotektonik dönemdeki jeolojik evrim ve havza modelleri. MTA Dergisi 107:73–92

    Google Scholar 

  • Sarychikhina O, Glowacka E (2015) Spatio-temporal evolution of aseismic ground deformation in the Mexicali Valley (Baja California, Mexico) from 1993 to 2010, using differential SAR interferometry. Proc Int Assoc Hydrol Sci 372:335

    Google Scholar 

  • Şengör AMC, Yılmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Google Scholar 

  • Şengör AMC, Görür N, Şaroğlu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike-slip faulting and basin formation, vol 37. Society of Economic Paleontologists and Mineralogists, London, pp 227–264

    Google Scholar 

  • Tan O, Tapırdamaz MC, ve Yörük A (2008) The earthquakes catalogues for Turkey. Turk J Earth Sci 17:405–418

    Google Scholar 

  • Tan O, Pabuçcu Z, Tapırdamaz C, İnan S, Ergintav S, Eyidoğan H, Aksoy E, Kuluöztürk F (2011) Aftershock study and seismotectonic implications of the 8 March 2010 Kovancılar (Elazıg, Turkey) earthquake (MW = 6.1). Geophys Res Lett. https://doi.org/10.1029/2011GL047702

    Article  Google Scholar 

  • Taymaz T, Eyidoğan H, Jackson J (1991) Source parameters of large earthquakes in the East Anatolian Fault Zone (Turkey). Geophys J Int 106(3):537–550

    Google Scholar 

  • Taymaz T, Yılmaz Y, Dilek Y (2007) The geodynamics of the Aegean and Anatolia: introduction. Geol Soc Lond Spec Publ 291:1–16

    Google Scholar 

  • Toksöz MN, Arpat E, Şaroğlu F (1977) East Anatolian earthquake of 24 November 1976. Nature 270(5636):423–425

    Google Scholar 

  • Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Traver IN (2012) GMES Sentinel-1 mission. Remote Sens Environ 120:9–24

    Google Scholar 

  • Türkelli N, Sandvol E, Zor E, Gök R, Bekler T, Al-Lazki A, Karabulut H, Kuleli S, Eken T, Gürbüz C, Bayraktutan S, Şeber D, Barazangi M (2003) Seismogenic zones in eastern Turkey. Geophys Res Lett 30(24).

  • Westaway R (2003) Kinematics of the Middle East and Eastern Mediterranean updated. Turk J Earth Sci 12:5–46

    Google Scholar 

  • Westaway R, Arger J (1996) The Gölbaşı basin, southeastern Turkey: a complex discontinuity in a major strike-slip fault zone. J Geol Soc (Lond) 153:729–743

    Google Scholar 

  • Westaway R, Arger J (2001) Kinematics of the Malatya-Ovacık fault zone. Geodin Acta 14:103–132

    Google Scholar 

  • Yagüe-Martínez N, Prats-Iraola P, Gonzalez FR, Brcic R, Shau R, Geudtner D, Bamler R (2016) Interferometric processing of Sentinel-1 TOPS data. IEEE Trans Geosci Remote Sens 54(4):2220–2234

    Google Scholar 

  • Yılmaz Y (1993) New evidence and model on the evolution of the southeast Anatolian Orogen. Geol Soc Am Bull 105:251–271

    Google Scholar 

  • Yılmaz Y, Şaroğlu F, ve Güner Y (1987) Initiation of the neomagmatism in East Anatolia. Tectonophysics 134:177–199

    Google Scholar 

  • Yönlü Ö, Altunel E, Karabacak V (2017) Geological and geomorphological evidence for the southwestern extension of the East Anatolian Fault Zone, Turkey. Earth Planet Sci Lett 469:1–14

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Chamber of Geological Engineers, AFAD Sivas Provincial Directorate, Elazığ Police House, and Pertek Mayor Ruhan Alan for their logistics support for the realization of this work. Thanks to İsmail Duran for his help in drawing Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Tatar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatar, O., Sözbilir, H., Koçbulut, F. et al. Surface deformations of 24 January 2020 Sivrice (Elazığ)–Doğanyol (Malatya) earthquake (Mw = 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures. Med. Geosc. Rev. 2, 385–410 (2020). https://doi.org/10.1007/s42990-020-00037-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42990-020-00037-2

Keywords

Navigation